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Abstract

We present a novel approach to the challenging issue

of database con�dential data protection. We adopt the

decision tree framework as our baseline and extend it

to cope with databases where the class label attribute

is not speci�ed. We are interested in con�dential data

that are randomly distributed over di�erent attributes

(referred to as multi-dimensional inference). For con-

�dential data protection, our method (referred to as

adaptive modi�cation) mitigates inference by evaluat-

ing and modifying some, not all, relevant data records.

We localize data modi�cation in a decision tree and,

instead of exhaustively evaluating all modi�cation pos-

sibilities, we select informative data to modify. Our

proposed method is e�ective in protection of con�den-

tial data and scalable for handling large databases.

1 INTRODUCTION

Safeguarding con�dential data of a database has been

a challenging issue in the past and emerges as one of

the most critical information technologies today. The

pressing demand for such a protection technique is partly

due to the trend of information sharing between insti-

tutions and among coalition members, and the open-

ing of the government databases to the public. The

problem that arises when con�dential information can

be derived from released data by unauthorized users is

commonly called the database inference problem.

Many of today's e�orts in con�dentiality protec-

tion have been geared towards modifying to-be-released

data in order to mitigate inference. Methods of modi-

�cation include perturbation ([4]) (i.e., alteration of an

attribute value to a new value), blocking ([2][13]) (i.e.,

replacement of an existing attribute value with a \?"

indicating ignorance), and aggregation (i.e., combina-

tion of several values into one coarser category) ([14]).

These modi�cations are made on the basis of a prob-

abilistic model ([2][5]), decision tree ([1]), association

rules ([6][7]) or the rough set theory ([10]).

Our goal is to lay a sound theoretical foundation for

con�dential data protection. In this paper, we develop

inference prevention methods on the basis of a deci-

sion tree framework ([12]). The decision tree method

conveniently provides a more localized description of

data records. The structure of the tree may easily be

traced back to individual instances, and the e�ect of the

modi�cation of particular instances on decision making

is more clear. It also delivers excellent performance

against many benchmark test datasets ([12]). In [1],

we applied the decision tree method as our baseline

approach to the inference problem, where con�dential

data were represented as values of the class label (at-

tribute) of the test data. However, con�dential data

may be composed of data from di�erent sources and

may not be restricted to one attribute (i.e., the class label).

It is cases in which con�dential data are distributed

over the entire database (referred to here as multi-

dimensional inference) that interest us. In this paper,

we extend the decision tree method in order to handle

distributed con�dential data.

Decision theoretical-based approaches often su�er

from the inability to scale-up to cope with large databases.

What limits these approaches the most is not the in-

tricate decision analysis required, but the exhaustive

evaluation of the entire databases in a repeated manner

during the modi�cation process. Our approach adopts



an adaptive modi�cation strategy which gives e�ective

performance and desirable results.

2 INFERENCE PROBLEM

We consider a simple two-leveled security protocol ([8])

which has High and Low users. The High users (e.g.,

the database manager) view the entire database, and

the Low users share the High view with the exception

of any con�dential data. When data are shared, High

releases some of the non-con�dential data to Low.

Authors of ([11]) have introduced a conceptual model

for database inference and discussed the necessary steps

involved in dealing with the inference problem. High

generates rules from the available data set, and then

determines whether there is inference. If the inference

is excessive, then it implements a protection plan to

lessen the inference (i.e., decides to modify by deleting

certain data from the database as it appears to Low).

In fact, many database inference papers have alluded

to our inference model. The output of our inference

model is the database that can be released to Low.

Our goal is to make modi�cations as parsimoniously as

possible and thus avoid imposing unnecessary changes

which lessen functionality.

2.1 Decision Tree Method

Our analysis of data protection is based on C4.5 deci-

sion tree ([12]). The C4.5 decision tree uses an infor-

mation theoretic test to evaluate the quality of decision

tree generation. It classi�es a new data record by as-

signing it the class label possessed by the majority of

data records that are at the same leaf node (i.e., the

end of a branch where a class label is assigned) of the

decision tree as the new data record. By convention,

the attribute used as the class label is deterministic.

To deal with multi-dimensional inference, we evaluate

the possibility of inference on an arbitrary attribute by

designating it as the class label (thereby the original

class label becomes an ordinary attribute.)

In our method, attributes that contain con�den-

tial data are viewed as the class labels of the testing

data, and the remainder of the database is considered

non-con�dential. In [1], the database inference prob-

lem was viewed as traditional decision tree learning,

and the prevention of database inference dealt exclu-

sively with attribute values of the training data (which

Table 1: Relational Table for Evaluation. Aj denotes

the jth attribute and the \?" denotes an unknown

value, a piece of con�dential datum, or a previously

modi�ed value.
key A1 A2 .. Ak .. AM class label

training data .. ? .. .. .. .. ..

? .. .. ? .. ? ..

.. .. .. .. .. .. ..

testing .. .. .. ? .. .. ?

.. ? .. .. .. .. ?

are only part of the non-con�dential data). Con�den-

tial data were associated with only one attribute (i.e.,

the class label). Inference prevention that structured

in this way is clearly insu�cient. In this paper, we

take into account the entire body of non-con�dential

data

2.2 Metric

Table 1 shows an instant view of a relational data table.

Modi�cation results in placing perhaps more \?"s in the

database. At this instant, one of the M attributes has

been selected as the class label. Data modi�cation is

likely to incur degradation of database performance. In

our approach, important performance metrics include

the e�ectiveness measure of con�dential data protec-

tion (E) and the measure of the loss of functionality

(F ) in a database. In terms of the decision tree method,

the e�ectiveness measure for the attribute currently se-

lected as the class label is determined by the classi�ca-

tion error of the test data (i.e. the con�dential data),

while the measure of loss of functionality is a function

of the classi�cation error of the training data (i.e. the

to-be-released data).

Suppose the jth attribute is posted as the class label.

Let the measure of protection e�ectiveness with respect

to the jth attribute be denoted as Ej and the measure

of the loss of functionality be denoted as Fj . The over-

all measure of E and F for the entire database are the

function (e.g.,weighted average) of Eis and Fis. The

measure F is usually has an upper bound of a given

threshold � (i.e., F � �) that represents the maxi-

mum level of information loss that users are willing to

tolerate. With the de�nitions of E and F in mind, our

optimization goal is to ([3])

Minimize E, while keeping F � �;

i.e., we optimize E with F as the objective function.



Note that the e�ect of protection is evaluated from

High's perspective, while the database functionality is

evaluated from Low's view.

3 ADAPTIVEMODIFICATION

Our adaptive strategy exploits the property of local-

ization inherent to the decision tree method and mod-

i�es not all attribute values, but rather only selected

ones. We examine the leaf nodes of a decision tree and

study the statistics of the data records at di�erent leaf

nodes. By restricting modi�cation to a small area of the

database, our approach preserves the database func-

tionality. During modi�cation, we visit the attribute

that contains the largest number of con�dential data

records and receives the lowest classi�cation error (i.e.,

the highest inference threat). With this selected at-

tribute in mind, we examine the distribution of asso-

ciated con�dential data and modify the leaf node that

has the highest population. Clearly, our search strategy

may not yield an overall optimal solution. However, the

controlled modi�cation scheme can e�ectively avoid the

high computational complexity incurred by exhaustive

search.1 We will describe our modi�cation procedures

at three levels in the following sections.

3.1 Selection of Attributes

Let the total number of con�dential attribute values be

denoted as S, the number of total attribute values be

D, and the classi�cation error of the test data with re-

spect to the jth attribute be Cerrj . At the �rst level,

we select from all the M attributes the one that max-

imizes the product of the number of associated con�-

dential data records and the inverse of the classi�cation

error

Uattr = max (1� Cerrj )(
TEj

S
)

where TEj is the number test data associated with the

jth attribute. Suppose attribute Aj is selected. Thus,

Aj is posted as the class label and denoted as Cj .

3.2 Selection of A Leaf Node

For the given Cj , we decide among all leaf nodes from

the corresponding decision tree, DTj , a leaf node to

1Exhaustive search means the evaluation of every possible

batch of attribute values of non-con�dential data.

visit. The selection of the leaf node is determined, at

least, by (1) the number of correctly labeled training

data records at a leaf, and (2) the number of correctly

classi�ed test data records at a leaf. Less correctly la-

beled training data implies that less e�ort is required to

alter the present class label at a leaf node. On the other

hand, the more correctly classi�ed test records are, the

higher the e�ect in protection is from modifying the

leaf node. Let the selected leaf node be denoted as Lk
and the immediate attribute (i.e., the last attribute on

the branch) of Lk be Ai. With Lk and Cj in mind, we

record the following statistical information:

� Rj : training records w.r.t. Cj

� Ej : testing records w.r.t. Cj

� Tr: correctly labeled training records at Lk

� Te: correctly classi�ed testing records at Lk

� Fr: incorrectly labeled training records at Lk

� Fe: incorrectly classi�ed testing records at Lk

+ -

. . . .

Tr, Te,
Fr, Fe

L k

A i

*

Figure 1: Lk is the leaf node and Ai is the immediate

attribute. Te, Tr, Fe and Fr denote the statistical infor-

mation of the data records associated with Lk. Assume

that at Lk class label is \+".

With these statistical information, the utility func-

tion that combines the above two factors is as follows:

Uleaf =
Te

Ej

(1�
Tr � Fr

Rj + Ej

);

We need information about the data distribution of

the neighbors (i.e., leaf nodes of di�erent values of Ai)

of Lk. At Ai, we store the relationship of data records

to its fellow leaf nodes as the ratio a1 : a2 : ::: : al,

for l di�erent values of Ai. Furthermore, those leaf

nodes with the same class label as Lk will be collectively

denoted as a+ and those with di�erent labels be a
�

.



3.3 Selection of Modi�cation Methods

At the leaf node Lk, our strategy to mitigate inference

involve two aspects:

(S1) Reduce the correctly classi�ed test records.

(S2) Reduce the correctly labeled training records.

The result of (S1) is expected to produce higher classi-

�cation error of the test data, while the result of (S2)

may cause the change of the value of the class label at

Lk and thus, a�ect the outcome of decision analysis.

To implement our strategy, we envision the following

three possible ways:

� (I1) Modify attribute values of correctly classi�ed

test records.

� (I2) Remove the value of class label of correct

training records.

� (I3) Modify attribute values correctly labeled train-

ing records.

For the purpose of minimizing the impact of mod-

i�cation, in both I1 and I3, we localize changes by re-

placing only those values of the immediate attribute

(i.e., Ai) with \?"s.2 In I2, the values of the class label

of some training data records are blocked. As a con-

sequence, a training data record with its class label

being blocked will be excluded from the training data

set. Item (S2) is carried out by implementing I2 and I3,

while item (S1) consists only of I1. In both I1 and I3,

we increase the uncertainty of classi�cation by moving

(or, redistributing) correct testing and training data

records to neighboring leaf nodes. In both I2 and I3,

the e�ort is to make the number of incorrectly labeled

training records to outnumber incorrectly labeled ones.

The di�erence between I2 and I3 is that the e�ect of

I3 depends upon the distribution of data records in the

neighborhood of Lk. Unlike I2, I1 and I3 are intended

to 'smear' data records of neighbor leaf nodes.

The choice between the three modi�cation methods

will depend on an estimation of the computational cost

and gain in con�dentiality, where the cost refers to the

total number of modi�cations executed and the gain

refers to the number of data records whose class labels

have been successfully altered.

2In decision tree analysis, a data record with \?"s at its at-

tribute values is called the uncertain evidence. Suppose the at-

tribute value of hth attribute is \?" and the hth attribute is

used in its classi�cation path. Then the impact (or weight) of

this data record is split among the group of leaf nodes under the

hth attribute according to the population distribution.

I1. The cost of I1 is Te, for all correctly classi�ed

test records will be modi�ed. On the other hand, the

gain is a
�

a++a�
Te, because those a

�

a++a�
Te data records

that used to be correct now become incorrect, where
a
�

a++a�
is the ratio of the number of re-distributed test

records will receive incorrect label. Summing the loss

and the gain yields the net loss of I1, which is a
�

a++a�
Te.

I2. For I2, the condition of applicability is that

Tr and Fr are close. Because the removal of the class

label of a training record results in deletion, the cost of

I2 is Tr�Fr+1, meaning that the amount of removal is

determined by the di�erence between Tr and Fr. After

deletion, the associated class label of Lk will change.

This means there are Te test records that will change to

a wrong class sign and Fe test records that will change

to the correct one. So, the gain is Te�Fe. (Note that

if Te � Fe, modi�cation of Lk is avoided.) The net

loss for I2 is therefore, ((Tr � Fr + 1)� (Te� Fe).

I3. For I3, the applicability is the same as I2.

As in the case of I1, modi�cation will be restricted to

the value of the nearest attribute (i.e., Ai). The gain

that arises from applying I3 is also Te � Fe as that

of I2. However, the calculation of the cost is more in-

volved, because a modi�ed training record will become

an uncertain evidence whose impact (or, weight) will

be distributed among di�erent values (i.e., leaf nodes)

of Ai. The number of changes (denoted as c) needed

to alter the associated class label can be iteratively de-

termined by 3

Tr � c+

cX

i=1

�i � Fr:

In this case, the cost of I3 is c. By putting together the

cost and the gain, the net loss of I3 can be obtained as

(c� (Te� Fe)).

3Let c be the amount of necessary changes with values at

Ai being replaced by \?"s. For each modi�cation, Tr becomes

(Tr�1+�j), where �j is the fraction of the mass of this modi�ed

record that gets back from re-distribution. For the sign of the

class label to change, we want

Tr � c+
cX

i=1

�i � Fr;

with

�i+1 =
a+ � i+

Pi
j=1 �i

a+ + a
�

� 1
:



3.4 Control Step

By comparing the net losses of the three approaches,

we pick the modi�cation method with the minimum

loss. Modi�cation hides one attribute value at a time

until either the leaf node is exhausted or the thresh-

old of allowed modi�cations of the present class label

is reached, where the threshold of modi�cation is deter-

mined according to the ratio of number of con�dential

values that is with this particular attribute (i.e., the

class label) and with other attributes. After modi�ca-

tion is carried out, we compute E and F and determine

whether or not F exceeds the given threshold. If it does

not, our modi�cation procedures will be repeated from

the top level.

4 DISCUSSION

Decision theoretical-based approaches to con�dential

data protection have been widely pursued by researchers

from di�erent �elds. Exhaustive evaluation incurs ex-

tremely high computational complexity and hence, im-

pedes the scalability of existing approaches. We pre-

sented an adaptive modi�cation method with a basis

in the decision tree framework. The transparency of

decision trees make them an excellent tool for analyz-

ing how speci�c data modi�cations may a�ect inference

possibilities. Our adaptive strategy selects and modi-

�es the most informative attribute values, with infor-

mation about statistical distribution obtained from de-

cision tree analysis, to e�ectively and parsimoniously

handle the database inference problem. Furthermore,

it localizes modi�cation operations in a manner that

preserves database performance.

4.1 Complexity

The gain in computational complexity is obvious. Let

M , N , S and G denote, respectively, the number of

attributes, data records, con�dential attribute values,

and modi�ed attribute values that are su�cient for

data protection. In the (batch) exhaustive evaluation,

the complexity is the combinatorialG
�
(MN)�S

G

�
4, while

in our approach, it is the polynomial order of M2S. In

fact, because exhaustive search involves large number

of repeated tree generation, it becomes impractically

4If the number of attribute values to be modi�ed is not known

a priori, di�erent values of G will be tested until performance

bound � is met in the average sense.

expensive to use for even a small relational table of the

dimension of N = 20 and M = 5 with �=25%. With

our proposed method, we are able to obtain satisfactory

results in terms of performance and protection.

We are presently experimenting with some data sets

from UCI repositories (e.g., [9]) and will test various

KDD databases. We have tested methods of exhaustive

search, single-attribute-valued best-�rst search5, and

our informative modi�cation.

4.2 Evaluation

As mentioned, our evaluation of con�dential data pro-

tection is based on the average of the classi�cation er-

ror of the test data (i.e., the modi�ed non-con�dential

data) with respect to each class label. We justify the

proposed approach by comparing the results with those

obtained from a best-�rst search. With the well-known

voting records dataset ([9]), the proposed approach se-

lects and modi�es attribute values of test records with

the modi�cation method I1 being chosen. The results

of modi�cation is close to those obtained from the best-

�rst search. For instance, with 20 con�dential attribute

values, in the best-�rst search the classi�cation error

increases from 5.26% to 57.90% with 11 modi�cations.

The proposed adaptive modi�cation selects 9, that are

part of the 11, modi�cations. The modi�cation method

I2 is likely to be selected in the case that a leaf node

is associated with a small number of training records,

but a large number of test data records. The adaptive

modi�cation was motivated by our experiments with

best-�rst search and thus, the performance of our pro-

posed selection strategy is expected to be very close to

the performance of the best-�rst strategy on the vot-

ing record data. In addition to the reduction of com-

putational complexity, the adaptive modi�cation avoid

unnecessary modi�cations, which can be a large quan-

tity, at the beginning and towards the end of selection

that the best-�rst strategy may face (due to the inef-

fectiveness of the data selection criterion under certain

conditions.)

5In this approach, for each attribute value, we estimate its

impact on the average classi�cation error. After evaluating all

attribute values, we hide the attribute value with the maximum

impact and update decision tree. Then, we resume the next

round selection.



4.3 Restoration

An attacker may know our inference prevention strat-

egy. As a result, modi�ed attribute values can be re-

stored and hence, con�dential data are not correctly

protected. We perform experiments in which the re-

maining unhidden attribute values were used to in-

fer the attribute values that had been hidden in our

�rst experiment. In term of voting data, the result

shows that the previously hidden attribute values (e.g.,

\physician fee freeze") are restored by using some other

attributes (e.g., \El Salvador aid"). In the wake of the

possibility of modi�ed values being restored, we repeat

the process of attribute value hiding, making previ-

ously hidden attributes con�dential, until restoration

risk goes below a speci�ed threshold. The need of re-

peated hiding (referred to as the rami�cation problem

of database inference [2]) presents a challenge to the

value suppression (e.g., blocking) modi�cation strat-

egy. We will explore the restoration and other types of

attacks in our future work.

5 FUTURE WORK

Our present blocking-based modi�cation may not be

the most e�ective means of modifying data. We will

also experiment with perturbation method. We have

not yet discussed the value-restoration problem, in which

an attacker might restore blocked values in the same

manner that he restores con�dential data. Also, we did

not discuss particular numerical values which might be

assigned to the tolerance level. We leave these issues

as part of our future work.

Our evaluation of the proposed method is based on

empirical study by comparing it with di�erent decision

tree approaches. We will evaluate it against other ex-

isting method based on di�erent frameworks for micro-

data suppression.
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